Displaying 221 – 240 of 558

Showing per page

A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand

Carlo Mariconda, Giulia Treu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let L : N × N be a Borelian function and consider the following problems inf F ( y ) = a b L ( y ( t ) , y ' ( t ) ) d t : y A C ( [ a , b ] , N ) , y ( a ) = A , y ( b ) = B ( P ) inf F * * ( y ) = a b L * * ( y ( t ) , y ' ( t ) ) d t : y A C ( [ a , b ] , N ) , y ( a ) = A , y ( b ) = B · ( P * * ) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F * * if L is just continuous in x. We then extend a result of Cellina on the Lipschitz regularity of the minima of (P) when L is not superlinear.

A remark on the topological entropies of covers and partitions

Pierre-Paul Romagnoli (2007)

Studia Mathematica

We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.

Currently displaying 221 – 240 of 558