Absolute Stability and Bifurcation Theory.
Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained
We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these.
A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.
We prove that if A is the basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, if A is completely invariant (i.e. ), and if μ is an arbitrary f-invariant measure with positive Lyapunov exponents on ∂A, then μ-almost every point q ∈ ∂A is accessible along a curve from A. In fact, we prove the accessibility of every “good” q, i.e. one for which “small neigh bourhoods arrive at large scale” under iteration of f. This generalizes the...
Soient un groupe de Lie connexe de dimension , une action localement libre de classe de sur une variété compacte de dimension . Nous supposons qu’il existe dans l’algèbre de Lie de un champ tel que les valeurs propres de soient avec . Alors, nous montrons que est -conjuguée à une “action modèle" de sur un espace homogène où est un groupe de Lie contenant . Si , est uniquement déterminé par ; si , il y a deux groupes possibles, et nous pouvons donc donner une...