Inégalités a priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques
We construct infinite measure preserving and nonsingular rank one -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving -actions; for these we show that the individual basis transformations have conservative ergodic Cartesian...
We prove that a compact family of bounded condensing multifunctions has bounded condensing set-theoretic union. Compactness is understood in the sense of the Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for the measure of an infinite union. Then we apply our result to infinite iterated function systems.
This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of , given by Urbański and Zinsmeister. The closure of the limit set of our IFS is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of . The parameter...
We construct a rank-one infinite measure preserving flow such that for each p > 0, the “diagonal” flow on the product space is ergodic.
We consider endomorphisms of a monoid defined by a special confluent rewriting system that admit a continuous extension to the completion given by reduced infinite words, and study from a dynamical viewpoint the nature of their infinite periodic points. For prefix-convergent endomorphisms and expanding endomorphisms, we determine the structure of the set of all infinite periodic points in terms of adherence values, bound the periods and show that all regular periodic points are attractors.
Let Ψn be a product of n independent, identically distributed random matrices M, with the properties that Ψn is bounded in n, and that M has a deterministic (constant) invariant vector. Assume that the probability of M having only the simple eigenvalue 1 on the unit circle does not vanish. We show that Ψn is the sum of a fluctuating and a decaying process. The latter converges to zero almost surely, exponentially fast as n→∞. The fluctuating part converges in Cesaro mean to a limit that is characterized...
We focus on invariant measures of an interacting particle system in the case when the set of sites, on which the particles move, has a structure different from the usually considered set . We have chosen the tree structure with the dynamics that leads to one of the classical particle systems, called the zero range process. The zero range process with the constant speed function corresponds to an infinite system of queues and the arrangement of servers in the tree structure is natural in a number...
We define, in an infinite-dimensional differential geometric framework, the 'infinitesimal Brunovský form' which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by 'endogenous dynamic feedback'.
We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.
We study the influence of time delays on the dynamics of the general Hahnfeldt et al. model of an angiogenesis process. We analyse the dynamics of the system for different values of the parameter α which reflects the strength of stimulation of the vessel formation process. Time delays are introduced in three subprocesses: tumour growth, stimulation and inhibition of vessel formation (represented by endothelial cell dynamics). We focus on possible destabilisation of the positive steady state due...