Mahler measure and entropy for commuting automorphisms of compact groups.
The paper deals with the notion of entropy for doubly stochastic operators. It is shown that the entropy defined by Maličky and Riečan in [MR] is equal to the operator entropy proposed in [DF]. Moreover, some continuity properties of the [MR] entropy are established.
The invariant measures for a Markovian operator corresponding to a random walk, in a random stationary one-dimensional environment defined by a dynamical system, are quasi-invariant measures for the system. We discuss the construction of such measures in the general case and show unicity, under some assumptions, for a rotation on the circle.
Fibre expanding systems have been introduced by Denker and Gordin. Here we show the existence of a finite partition for such systems which is fibrewise a Markov partition. Such partitions have direct applications to the Abramov-Rokhlin formula for relative entropy and certain polynomial endomorphisms of ℂ².
Soient un groupe discret géométriquement fini d’isométries d’une variété de Hadamard pincée et une pointe de l’orbifold associé . Munissant de sa mesure de Patterson-Sullivan , nous obtenons une estimation asymptotique de la masse d’un petit voisinage horocyclique de , moyennant une hypothèse sur la croissance du sous-groupe parabolique associé à , hypothèse qui est réalisée si est symétrique de rang . Nous en déduisons une estimation asymptotique du temps de retour du flot géodésique...
Let and for and when for , we obtain an effective archimedean counting result for a discrete orbit of in a homogeneous space where is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family of compact subsets, there exists such that for an explicit measure on which depends on . We also apply the affine sieve and describe the distribution of almost primes on orbits of in arithmetic settings....
We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically h-expansive system of equal topological entropy.
Let T be a Markov operator on an L¹-space. We study conditions under which T is mean ergodic and satisfies dim Fix(T) < ∞. Among other things we prove that the sequence converges strongly to a rank-one projection if and only if there exists a function 0 ≠ h ∈ L¹₊ which satisfies for every density f. Analogous results for strongly continuous semigroups are given.
Let M be a complete Riemannian manifold, M ∈ ℕ and p ≥ 1. We prove that almost everywhere on x = (x1,...,xN) ∈ MN for Lebesgue measure in MN, the measure μ ( x ) = 1 N ∑ k = 1 N δ x k has a uniquep–mean ep(x). As a consequence, if X = (X1,...,XN) is a MN-valued random variable with absolutely continuous law, then almost surely μ(X(ω)) has a unique p–mean. In particular if (Xn)n ≥ 1 is an independent sample of an absolutely continuous law in M, then the process ep,n(ω) = ep(X1(ω),...,Xn(ω)) is...
Let be a non-integer. We consider -expansions of the form , where the digits are generated by means of a Borel map defined on . We show that has a unique mixing measure of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure the digits form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of -expansions....
We consider the problem of finding a measurable unfriendly partition of the vertex set of a locally finite Borel graph on standard probability space. After isolating a sufficient condition for the existence of such a partition, we show how it settles the dynamical analog of the problem (up to weak equivalence) for graphs induced by free, measure-preserving actions of groups with designated finite generating set. As a corollary, we obtain the existence of translation-invariant random unfriendly colorings...
Soit un espace mesurable muni d’une transformation bijective bi-mesurable . Soit une application mesurable de dans un groupe localement compact à base dénombrable . Nous notons l’extension de , induite par , au produit . Nous donnons une description des mesures positives -invariantes et ergodiques. Nous obtenons aussi une généralisation du théorème de réduction cohomologique de O.Sarig [5] à un groupe LCD quelconque.
Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.
According to the Furstenberg-Zimmer structure theorem, every measure-preserving system has a maximal distal factor, and is weak mixing relative to that factor. Furstenberg and Katznelson used this structural analysis of measure-preserving systems to provide a perspicuous proof of Szemerédi’s theorem. Beleznay and Foreman showed that, in general, the transfinite construction of the maximal distal factor of a separable measure-preserving system can extend arbitrarily far into the countable ordinals....
We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion...