Theoretical and computational bounds for m-cycles of the 3n+1-problem
For an extensive range of infinite words, and the associated symbolic dynamical systems, we compute, together with the usual language complexity function counting the finite words, the minimal and maximal complexity functions we get by replacing finite words by finite patterns, or words with holes.
For an extensive range of infinite words, and the associated symbolic dynamical systems, we compute, together with the usual language complexity function counting the finite words, the minimal and maximal complexity functions we get by replacing finite words by finite patterns, or words with holes.
For an extensive range of infinite words, and the associated symbolic dynamical systems, we compute, together with the usual language complexity function counting the finite words, the minimal and maximal complexity functions we get by replacing finite words by finite patterns, or words with holes.
Suppose has a 2-dimensional expanding subspace , satisfies a regularity condition, called “good star”, and has , where is an oriented compound of . A morphism of the free group on is called a non-abelianization of if it has structure matrix . We show that there is a tiling substitution whose “boundary substitution” is a non-abelianization of . Such a tiling substitution leads to a self-affine tiling of with as its expansion. In the last section we find conditions on so...
For invertible transformations we introduce various notions of topological entropy. For compact invariant sets these notions are all the same and equal the usual topological entropy. We show that for non-invariant sets these notions are different. They can be used to detect the direction in time in which the system evolves to highest complexity.
Let ℝ be the real line and let Homeo₊(ℝ) be the orientation preserving homeomorphism group of ℝ. Then a subgroup G of Homeo₊(ℝ) is called tightly transitive if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G with |G:H| = ∞ have this property. In this paper, for each integer n > 1, we determine all the topological conjugation classes of tightly transitive subgroups G of Homeo₊(ℝ) which are isomorphic to ℤⁿ and have countably many nontransitive points.
We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow of the automorphism group of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and is amenable, then admits a unique invariant...
On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces and a sequence of continuous maps , , is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of . As an application we construct a large class of smooth triangular maps of the square of type and positive...
Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.
For a continuous map f preserving orbits of an aperiodic -action on a compact space, its displacement function assigns to x the “time” it takes to move x to f(x). We show that this function is continuous if the action is minimal. In particular, f is homotopic to the identity along the orbits of the action.
We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.
For a class of one-dimensional holomorphic maps f of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of f. This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.
A continuous map of the interval is chaotic iff there is an increasing sequence of nonnegative integers such that the topological sequence entropy of relative to , , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers there is a chaotic map of the interval such that ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric...