Displaying 41 – 60 of 72

Showing per page

Three complexity functions

Sébastien Ferenczi, Pascal Hubert (2012)

RAIRO - Theoretical Informatics and Applications

For an extensive range of infinite words, and the associated symbolic dynamical systems, we compute, together with the usual language complexity function counting the finite words, the minimal and maximal complexity functions we get by replacing finite words by finite patterns, or words with holes.

Three complexity functions

Sébastien Ferenczi, Pascal Hubert (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

For an extensive range of infinite words, and the associated symbolic dynamical systems, we compute, together with the usual language complexity function counting the finite words, the minimal and maximal complexity functions we get by replacing finite words by finite patterns, or words with holes.

Three complexity functions

Sébastien Ferenczi, Pascal Hubert (2012)

RAIRO - Theoretical Informatics and Applications

For an extensive range of infinite words, and the associated symbolic dynamical systems, we compute, together with the usual language complexity function counting the finite words, the minimal and maximal complexity functions we get by replacing finite words by finite patterns, or words with holes.

Tilings associated with non-Pisot matrices

Maki Furukado, Shunji Ito, E. Arthur Robinson (2006)

Annales de l’institut Fourier

Suppose A G l d ( ) has a 2-dimensional expanding subspace E u , satisfies a regularity condition, called “good star”, and has A * 0 , where A * is an oriented compound of A . A morphism θ of the free group on { 1 , 2 , , d } is called a non-abelianization of A if it has structure matrix A . We show that there is a tiling substitution Θ whose “boundary substitution” θ = Θ is a non-abelianization of A . Such a tiling substitution Θ leads to a self-affine tiling of E u 2 with A u : = A | E u G L 2 ( ) as its expansion. In the last section we find conditions on A so...

Time weighted entropies

Jörg Schmeling (2000)

Colloquium Mathematicae

For invertible transformations we introduce various notions of topological entropy. For compact invariant sets these notions are all the same and equal the usual topological entropy. We show that for non-invariant sets these notions are different. They can be used to detect the direction in time in which the system evolves to highest complexity.

Topological conjugation classes of tightly transitive subgroups of Homeo₊(ℝ)

Enhui Shi, Lizhen Zhou (2016)

Colloquium Mathematicae

Let ℝ be the real line and let Homeo₊(ℝ) be the orientation preserving homeomorphism group of ℝ. Then a subgroup G of Homeo₊(ℝ) is called tightly transitive if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G with |G:H| = ∞ have this property. In this paper, for each integer n > 1, we determine all the topological conjugation classes of tightly transitive subgroups G of Homeo₊(ℝ) which are isomorphic to ℤⁿ and have countably many nontransitive points.

Topological dynamics of unordered Ramsey structures

Moritz Müller, András Pongrácz (2015)

Fundamenta Mathematicae

We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow M ( G ) of the automorphism group G of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of M ( G ) . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and G is amenable, then M ( G ) admits a unique invariant...

Topological entropy and differential equations

Ján Andres, Pavel Ludvík (2023)

Archivum Mathematicum

On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.

Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval

Sergiĭ Kolyada, Michał Misiurewicz, L’ubomír Snoha (1999)

Fundamenta Mathematicae

The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces ( X i ) i = 1 and a sequence of continuous maps ( f i ) i = 1 , f i : X i X i + 1 , is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of f n . . . f 2 f 1 . As an application we construct a large class of smooth triangular maps of the square of type 2 and positive...

Topological entropy on zero-dimensional spaces

Jozef Bobok, Ondřej Zindulka (1999)

Fundamenta Mathematicae

Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.

Topological friction in aperiodic minimal m -actions

Jarosław Kwapisz (2010)

Fundamenta Mathematicae

For a continuous map f preserving orbits of an aperiodic m -action on a compact space, its displacement function assigns to x the “time” t m it takes to move x to f(x). We show that this function is continuous if the action is minimal. In particular, f is homotopic to the identity along the orbits of the action.

Topological Pressure for One-Dimensional Holomorphic Dynamical Systems

Katrin Gelfert, Christian Wolf (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

For a class of one-dimensional holomorphic maps f of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of f. This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.

Topological sequence entropy for maps of the circle

Roman Hric (2000)

Commentationes Mathematicae Universitatis Carolinae

A continuous map f of the interval is chaotic iff there is an increasing sequence of nonnegative integers T such that the topological sequence entropy of f relative to T , h T ( f ) , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that h T ( f ) = 0 ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric...

Currently displaying 41 – 60 of 72