Displaying 161 – 180 of 668

Showing per page

Dynamical characterization of C-sets and its application

Jian Li (2012)

Fundamenta Mathematicae

We set up a general correspondence between algebraic properties of βℕ and sets defined by dynamical properties. In particular, we obtain a dynamical characterization of C-sets, i.e., sets satisfying the strong Central Sets Theorem. As an application, we show that Rado systems are solvable in C-sets.

Dynamical directions in numeration

Guy Barat, Valérie Berthé, Pierre Liardet, Jörg Thuswaldner (2006)

Annales de l’institut Fourier

This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β -numeration and its generalisations, abstract numeration systems and...

Dynamical properties of the automorphism groups of the random poset and random distributive lattice

Alexander S. Kechris, Miodrag Sokić (2012)

Fundamenta Mathematicae

A method is developed for proving non-amenability of certain automorphism groups of countable structures and is used to show that the automorphism groups of the random poset and random distributive lattice are not amenable. The universal minimal flow of the automorphism group of the random distributive lattice is computed as a canonical space of linear orderings but it is also shown that the class of finite distributive lattices does not admit hereditary order expansions with the Amalgamation Property....

Dynamical systems and shapes.

J.J. Sánchez-Gabites (2008)

RACSAM

This survey is an introduction to some of the methods, techniques and concepts from algebraic topology and related areas (homotopy theory, shape theory) which can be fruitfully applied to study problems concerning continuous dynamical systems. To this end two instances which exemplify the interaction between topology and dynamics are considered, namely, Conley’s index theory and the study of some properties of certain attractors.

Dynamical systems arising from elliptic curves

P. D'Ambros, G. Everest, R. Miles, T. Ward (2000)

Colloquium Mathematicae

We exhibit a family of dynamical systems arising from rational points on elliptic curves in an attempt to mimic the familiar toral automorphisms. At the non-archimedean primes, a continuous map is constructed on the local elliptic curve whose topological entropy is given by the local canonical height. Also, a precise formula for the periodic points is given. There follows a discussion of how these local results may be glued together to give a map on the adelic curve. We are able to give a map whose...

Dynamics of commuting homeomorphisms of chainable continua

Christopher Mouron (2010)

Colloquium Mathematicae

A chainable continuum, X, and homeomorphisms, p,q: X → X, are constructed with the following properties: (1) p ∘ q = q ∘ p, (2) p, q have simple dynamics, (3) p ∘ q is a positively continuum-wise fully expansive homeomorphism that has positive entropy and is chaotic in the sense of Devaney and in the sense of Li and Yorke.

Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory

Jeffrey Diller, Romain Dujardin, Vincent Guedj (2010)

Annales scientifiques de l'École Normale Supérieure

We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points...

Dynamics semi-conjugated to a subshift for some polynomial mappings in C2.

Gabriel Vigny (2007)

Publicacions Matemàtiques

We study the dynamics near infinity of polynomial mappings f in C2. We assume that f has indeterminacy points and is non constant on the line at infinity L∞. If L∞ is f-attracting, we decompose the Green current along itineraries defined by the indeterminacy points and their preimages. The symbolic dynamics that arises is a subshift on an infinite alphabet.

Each nowhere dense nonvoid closed set in Rn is a σ-limit set

Andrei Sivak (1996)

Fundamenta Mathematicae

We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in n , n ≥ 1, is a σ-limit set for some continuous map.

Eigenvalues and simplicity of interval exchange transformations

Sébastien Ferenczi, Luca Q. Zamboni (2011)

Annales scientifiques de l'École Normale Supérieure

For a class of d -interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first...

Ellis groups of quasi-factors of minimal flows

Joseph Auslander (2000)

Colloquium Mathematicae

A quasi-factor of a minimal flow is a minimal subset of the induced flow on the space of closed subsets. We study a particular kind of quasi-factor (a 'joining' quasi-factor) using the Galois theory of minimal flows. We also investigate the relation between factors and quasi-factors.

Embedding odometers in cellular automata

Ethan M. Coven, Reem Yassawi (2009)

Fundamenta Mathematicae

We consider the problem of embedding odometers in one-dimensional cellular automata. We show that (1) every odometer can be embedded in a gliders-with-reflecting-walls cellular automaton, which one depending on the odometer, and (2) an odometer can be embedded in a cellular automaton with local rule x i x i + x i + 1 m o d n (i ∈ ℤ), where n depends on the odometer, if and only if it is “finitary.”

Embedding solenoids

Alex Clark, Robbert Fokkink (2004)

Fundamenta Mathematicae

A generalized solenoid is an inverse limit space with bonding maps that are (regular) covering maps of closed compact manifolds. We study the embedding properties of solenoids in linear space and in foliations.

Embedding tiling spaces in surfaces

Charles Holton, Brian F. Martensen (2008)

Fundamenta Mathematicae

We show that an aperiodic minimal tiling space with only finitely many asymptotic composants embeds in a surface if and only if it is the suspension of a symbolic interval exchange transformation (possibly with reversals). We give two necessary conditions for an aperiodic primitive substitution tiling space to embed in a surface. In the case of substitutions on two symbols our classification is nearly complete. The results characterize the codimension one hyperbolic attractors of surface diffeomorphisms...

Currently displaying 161 – 180 of 668