Displaying 161 – 180 of 952

Showing per page

Complex one-frequency cocycles

Artur Avila, Svetlana Jitomirskaya, Christian Sadel (2014)

Journal of the European Mathematical Society

We show that on a dense open set of analytic one-frequency complex valued cocycles in arbitrary dimension Oseledets filtration is either dominated or trivial. The underlying mechanism is different from that of the Bochi-Viana Theorem for continuous cocycles, which links non-domination with discontinuity of the Lyapunov exponent. Indeed, in our setting the Lyapunov exponents are shown to depend continuously on the cocycle, even if the initial irrational frequency is allowed to vary. On the other...

Complex Oscillations and Limit Cycles in Autonomous Two-Component Incommensurate Fractional Dynamical Systems

Datsko, Bohdan, Luchko, Yuri (2012)

Mathematica Balkanica New Series

MSC 2010: 26A33, 34D05, 37C25In the paper, long-time behavior of solutions of autonomous two-component incommensurate fractional dynamical systems with derivatives in the Caputo sense is investigated. It is shown that both the characteristic times of the systems and the orders of fractional derivatives play an important role for the instability conditions and system dynamics. For these systems, stationary solutions can be unstable for wider range of parameters compared to ones in the systems with...

Complexity and growth for polygonal billiards

J. Cassaigne, Pascal Hubert, Serge Troubetzkoy (2002)

Annales de l’institut Fourier

We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.

Composants of the horseshoe

Christoph Bandt (1994)

Fundamenta Mathematicae

The horseshoe or bucket handle continuum, defined as the inverse limit of the tent map, is one of the standard examples in continua theory as well as in dynamical systems. It is not arcwise connected. Its arcwise components coincide with composants, and with unstable manifolds in the dynamical setting. Knaster asked whether these composants are all homeomorphic, with the obvious exception of the zero composant. Partial results were obtained by Bellamy (1979), Dębski and Tymchatyn (1987), and Aarts...

Composite control of the n -link chained mechanical systems

Jiří Zikmund (2008)

Kybernetika

In this paper, a new control concept for a class of underactuated mechanical system is introduced. Namely, the class of n -link chains, composed of rigid links, non actuated at the pivot point is considered. Underactuated mechanical systems are those having less actuators than degrees of freedom and thereby requiring more sophisticated nonlinear control methods. This class of systems includes among others frequently used for the modeling of walking planar structures. This paper presents the stabilization...

Computing the differential of an unfolded contact diffeomorphism

Klaus Böhmer, Drahoslava Janovská, Vladimír Janovský (2003)

Applications of Mathematics

Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism Φ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential D Φ ( 0 ) of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of D Φ ( 0 ) . Singularity classes containing bifurcation points with c o d i m 3 , c o r a n k = 1 are considered.

Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability

Patrick Bonckaert (1990)

Annales de l'institut Fourier

We give sufficient conditions for the conjugacy of two diffeomorphisms coinciding on a common invariant submanifold V and with equal normal derivative; moreover we obtain that the homeomorphism h realizing this conjugacy satisfies additional inequalities. These inequalities, implying also the existence of the normal derivative of h along V, serve to extend this conjugacy towards regions where moduli of stability are present.

Construction of attractors and filtrations

George Osipenko (1999)

Banach Center Publications

This paper is a study of the global structure of the attractors of a dynamical system. The dynamical system is associated with an oriented graph called a Symbolic Image of the system. The symbolic image can be considered as a finite discrete approximation of the dynamical system flow. Investigation of the symbolic image provides an opportunity to localize the attractors of the system and to estimate their domains of attraction. A special sequence of symbolic images is considered in order to obtain...

Continuity of attractors

Geneviève Raugel (1989)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Currently displaying 161 – 180 of 952