Constructing complete chaotic maps with reciprocal structures.
We prove a classification theorem of the “Glimm-Effros” type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order which is not Borel linearizable.
For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which and . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...
According to A. Lasota, a continuous function from a real compact interval into itself is called generically chaotic if the set of all points , for which and , is residual in . Being inspired by this definition we say that is densely chaotic if this set is dense in . A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the...
A new method called C-C-1 method is suggested, which can improve some drawbacks of the original C-C method. Based on the theory of period N, a new quantity S(t) for estimating the delay time window of a chaotic time series is given via direct computing a time-series quantity S(m,N,r,t), from which the delay time window can be found. The optimal delay time window is taken as the first period of the chaotic time series with a local minimum of S(t). Only the first local minimum of the average of a...
We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup does exist for any bounded ; and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.
For the real quadratic map and a given a point has good expansion properties if any interval containing also contains a neighborhood of with univalent, with bounded distortion and for some . The -weakly expanding set is the set of points which do not have good expansion properties. Let denote the negative fixed point and the first return time of the critical orbit to . We show there is a set of parameters with positive Lebesgue measure for which the Hausdorff dimension of...
Let , , and let be a continuous map having the branching point fixed. We prove that is distributionally chaotic iff the topological entropy of is positive.
The paper presents results of examination of control algorithms for the purpose of controlling chaos in spatially distributed systems like the coupled map lattice (CML). The mathematical definition of the CML, stability analysis as well as some basic results of numerical simulation exposing complex, spatiotemporal and chaotic behavior of the CML were already presented in another paper. The main purpose of this article is to compare the efficiency of controlling chaos by simple classical algorithms...
In this paper, dual synchronization of a hybrid system containing a chaotic Colpitts circuit and a Chua’s circuit, connected by an additive white Gaussian noise (AWGN) channel, is studied via numeric simulations. The extended Kalman filter (EKF) is employed as the response system to achieve the dual synchronization. Two methods are proposed and investigated. The first method treats the combination of a Colpitts circuit and a Chua’s circuit as a higher- dimensional system, while the second method...