Displaying 281 – 300 of 712

Showing per page

Gibbs-Markov-Young structures*, **, ***

Carla L. Dias (2012)

ESAIM: Proceedings

We discuss the geometric structures defined by Young in [9, 10], which are used to prove the existence of an ergodic absolutely continuous invariant probability measure and to study the decay of correlations in expanding or hyperbolic systems on large parts.

Global synchronization of chaotic Lur’e systems via replacing variables control

Xiaofeng Wu, Yi Zhao, Muhong Wang (2008)

Kybernetika

Finding sufficient criteria for synchronization of master-slave chaotic systems by replacing variables control has been an open problem in the field of chaos control. This paper presents some recent works on the subject, with emphasis on chaos synchronization of both identical and parametrically mismatched Lur’e systems by replacing variables control. The synchronization schemes are formally constructed and two classes of sufficient criteria for global synchronization, linear matrix inequality criterion...

Groupes de Schottky et comptage

Jean-François Quint (2005)

Annales de l’institut Fourier

Soient X un espace symétrique de type non compact et Γ un groupe discret d’isométries de X du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de Γ sur X .

Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold

Nalini Anantharaman, Stéphane Nonnenmacher (2007)

Annales de l’institut Fourier

We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....

Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations

Franz Hofbauer (2009)

Commentationes Mathematicae Universitatis Carolinae

We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence...

Currently displaying 281 – 300 of 712