Reversible Anosov diffeomorphisms and large deviations.
A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce open sets () of symplectic diffeomorphisms and Hamiltonian systems, exhibitinglargerobustly transitive sets. We show that the closure of such open sets contains a variety of systems, including so-calleda priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of...
Let F be an expansive flow with the pseudo orbits tracing property on a compact metric space X. Suppose X is connected, locally connected and contains at least two distinct orbits. Then any point is a saddle.
We consider a nonlinear area preserving Anosov map on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator . The usual semi-classical Trace formula expresses for finite time , in the limit , in terms of periodic orbits of of period . Recent work reach time where is the Ehrenfest time, and is the Lyapounov coefficient. Using a semi-classical normal form...
It is well known that any continuous piecewise monotone interval map f with positive topological entropy is semiconjugate to some piecewise affine map with constant slope . We prove this result for a class of Markov countably piecewise monotone continuous interval maps.
As is well known, a horseshoe map, i.e. a special injective reimbedding of the unit square in (or more generally, of the cube in ) as considered first by S. Smale [5], defines a shift dynamics on the maximal invariant subset of (or ). It is shown that this remains true almost surely for noninjective maps provided the contraction rate of the mapping in the stable direction is sufficiently strong, and bounds for this rate are given.