Conditions under which a Geodesic Flow is Anosov.
In two fundamental classical papers, Masur [14] and Veech [21] have independently proved that the Teichmüller geodesic flow acts ergodically on each connected component of each stratum of the moduli space of quadratic differentials. It is therefore interesting to have a classification of the ergodic components. Veech has proved that these strata are not necessarily connected. In a recent work [8], Kontsevich and Zorich have completely classified the components in the particular case where the quadratic...
In this paper, we show that the C1 interior of the set of all continuum-wise expansive diffeomorphisms of a closed manifold coincides with the C1 interior of the set of all expansive diffeomorphisms. And the C1 interior of the set of all continuum-wise fully expansive diffeomorphisms on a surface is investigated. Furthermore, we have necessary and sufficient conditions for a diffeomorphism belonging to these open sets to be Anosov.
We estimate from above and below the Hausdorff dimension of SRB measure for contracting-on-average baker maps.
We prove a classification theorem of the “Glimm-Effros” type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order which is not Borel linearizable.
A. J. Montesinos has shown that a geodesic correspondence between two complete Riemannian manifolds with transitive topological geodesic flow is a homothety. In this paper we prove a similar result for a conformal geodesic correspondence between two singular flat surfaces with conical singularities and negative concentrated curvature.