Displaying 241 – 260 of 378

Showing per page

On the spectrum of stochastic perturbations of the shift and Julia sets

el Houcein el Abdalaoui, Ali Messaoudi (2012)

Fundamenta Mathematicae

We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces ( α ( ) ,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².

On transcendental automorphisms of algebraic foliations

B. Scárdua (2003)

Fundamenta Mathematicae

We study the group Aut(ℱ) of (self) isomorphisms of a holomorphic foliation ℱ with singularities on a complex manifold. We prove, for instance, that for a polynomial foliation on ℂ² this group consists of algebraic elements provided that the line at infinity ℂP(2)∖ℂ² is not invariant under the foliation. If in addition ℱ is of general type (cf. [20]) then Aut(ℱ) is finite. For a foliation with hyperbolic singularities at infinity, if there is a transcendental automorphism then the foliation is either...

On μ-compatible metrics and measurable sensitivity

Ilya Grigoriev, Marius Cătălin Iordan, Amos Lubin, Nathaniel Ince, Cesar E. Silva (2012)

Colloquium Mathematicae

We introduce the notion of W-measurable sensitivity, which extends and strictly implies canonical measurable sensitivity, a measure-theoretic version of sensitive dependence on initial conditions. This notion also implies pairwise sensitivity with respect to a large class of metrics. We show that nonsingular ergodic and conservative dynamical systems on standard spaces must be either W-measurably sensitive, or isomorphic mod 0 to a minimal uniformly rigid isometry. In the finite measure-preserving...

Parapuzzle of the multibrot set and typical dynamics of unimodal maps

Artur Avila, Mikhail Lyubich, Weixiao Shen (2011)

Journal of the European Mathematical Society

We study the parameter space of unicritical polynomials f c : z z d + c . For complex parameters, we prove that for Lebesgue almost every c , the map f c is either hyperbolic or infinitely renormalizable. For real parameters, we prove that for Lebesgue almost every c , the map f c is either hyperbolic, or Collet–Eckmann, or infinitely renormalizable. These results are based on controlling the spacing between consecutive elements in the “principal nest” of parapuzzle pieces.

Perturbations of flexible Lattès maps

Xavier Buff, Thomas Gauthier (2013)

Bulletin de la Société Mathématique de France

We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.

Points périodiques d’applications birationnelles de 2

Charles Favre (1998)

Annales de l'institut Fourier

Nous donnons une condition suffisante pour l’existence de points périodiques pour une application birationnelle de 2 . Sous cette hypothèse, une estimation précise du nombre de points périodiques de période fixée est obtenue. Nous donnons une application de ce résultat à l’étude dynamique de ces applications, en calculant explicitement l’auto-intersection de leur courant invariant naturellement associé. Nos résultats reposent essentiellement sur le théorème de Bézout donnant le cardinal de l’intersection...

Currently displaying 241 – 260 of 378