Absolute Stability and Bifurcation Theory.
Previous Page 2
Ricardo Mané (1979)
Inventiones mathematicae
Hidekazu Ito (1991)
Mathematische Zeitschrift
Franz Rothe (1994)
Aequationes mathematicae
Franz Rothe (1994)
Aequationes mathematicae
Innocenti, Giacomo, Genesio, Roberto, Tesi, Alberto (2011)
Journal of Applied Mathematics
Klaudiusz Wójcik (1997)
Annales Polonici Mathematici
We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on for which is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on .
Kaloshin, Vadim Yu. (1999)
Annals of Mathematics. Second Series
Bernold Fiedler (1985)
Journal für die reine und angewandte Mathematik
Andrzej Szulkin (1989)
Mathematische Annalen
Grzegorz Dylawerski, Kazimierz Gęba, Jerzy Jodel, Wacław Marzantowicz (1991)
Annales Polonici Mathematici
Alexander D. Bruno (2011)
Banach Center Publications
Here we present basic ideas and algorithms of Power Geometry and give a survey of some of its applications. In Section 2, we consider one generic ordinary differential equation and demonstrate how to find asymptotic forms and asymptotic expansions of its solutions. In Section 3, we demonstrate how to find expansions of solutions to Painlevé equations by this method, and we analyze singularities of plane oscillations of a satellite on an elliptic orbit. In Section 4, we consider the problem of local...
Kurakin, L.G., Yudovich, V.I. (2000)
Sibirskij Matematicheskij Zhurnal
Salem Mathlouthi (1987)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
K. Wysocki, A. Floer, K. Cieliebak (1996)
Mathematische Zeitschrift
Slawomir Rybicki (1991)
Publicacions Matemàtiques
Let f: Rn x Rn → Rn be a continuous map such that f(0,λ) = 0 for all λ ∈ Rk. In this article we formulate, in terms of the Euler characteristic of algebraic sets, sufficient conditions for the existence of bifurcation points of the equation f(x,λ) = 0. Moreover we apply these results in bifurcation theory to ordinary differential equations. It is worth to point out that in the last paragraph we show how to verify, by computer, the assumptions of the theorems of this paper.
A. Ambrosetti, D. Arcoya, J. L. Gámez (1998)
Rendiconti del Seminario Matematico della Università di Padova
Benoit, E. (1996)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Previous Page 2