Bifurcations de points fixes elliptiques - III. Orbites périodiques de «petites» périodes et élimination résonnante des couples de courbes invariantes
In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
In this paper we show that, for a given value of the energy, there is a bifurcation for the two imaginary centers problem. For this value not only the configuration of the orbits changes but also a change in the topology of the phase space occurs.
It is proved in this paper that the maximum number of limit cycles of system⎧ dx/dt = y⎨⎩ dy/dt = kx - (k + 1)x2 + x3 + ε(α + βx + γx2)yis equal to two in the finite plane, where k > (11 + √33) / 4 , 0 < |ε| << 1, |α| + |β| + |γ| ≠ 0. This is partial answer to the seventh question in [2], posed by Arnold.
Knowledge about the behavior of discontinuous piecewise-linear maps is important for a wide range of applications. An efficient way to investigate the bifurcation structure in 2D parameter spaces of such maps is to detect specific codimension-2 bifurcation points, called organizing centers, and to describe the bifurcation structure in their neighborhood. In this work, we present the organizing centers in the 1D discontinuous piecewise-linear map...
The paper deals with the topological classification of singularities of vector fields on the plane which are invariant under reflection with respect to a line. As it has been proved in previous papers, such a classification is necessary to determine the different topological types of singularities of vector fiels on R3 whose linear part is invariant under rotations. To get the classification we use normal form theory and the the blowing-up method.