Dynamical systems and Lagrangian spaces.
We give sufficient conditions for the strong asymptotic stability of the distributions of dynamical systems with multiplicative perturbations. We apply our results to iterated function systems.
We recount here some preliminary attempts to devise quantum analogues of certain aspects of Mather’s theory of minimizing measures [M1-2, M-F], augmented by the PDE theory from Fathi [F1,2] and from [E-G1]. This earlier work provides us with a Lipschitz continuous function solving the eikonal equation aėȧnd a probability measure solving a related transport equation.We present some elementary formal identities relating certain quantum states and . We show also how to build out of an approximate...
This note deals with Lagrangian fibrations of elliptic K3 surfaces and the associated Hamiltonian monodromy. The fibration is constructed through the Weierstraß normal form of elliptic surfaces. There is given an example of K3 dynamical models with the identity monodromy matrix around 12 elementary singular loci.
We characterize the geometry of a path in a sub-riemannian manifold using two metric invariants, the entropy and the complexity. The entropy of a subset of a metric space is the minimum number of balls of a given radius needed to cover . It allows one to compute the Hausdorff dimension in some cases and to bound it from above in general. We define the complexity of a path in a sub-riemannian manifold as the infimum of the lengths of all trajectories contained in an -neighborhood of the path,...
We characterize the geometry of a path in a sub-Riemannian manifold using two metric invariants, the entropy and the complexity. The entropy of a subset A of a metric space is the minimum number of balls of a given radius ε needed to cover A. It allows one to compute the Hausdorff dimension in some cases and to bound it from above in general. We define the complexity of a path in a sub-Riemannian manifold as the infimum of the lengths of all trajectories contained in an ε-neighborhood of the path,...
If the ergodic transformations S, T generate a free action on a finite non-atomic measure space (X,S,µ) then for any there exists a measurable function f on X for which and -almost everywhere as N → ∞. In the special case when S, T are rationally independent rotations of the circle this result answers a question of M. Laczkovich.
A mistake was found in the reasoning leading to a Lagrangian which we considered as equivalent from the formula for the action S(γ) below the classical mechanical problem (3) on "Non singular Hamiltonian systems and geodesic flows on surfaces with negative curvature", page 271.