Isotopy of sympletic balls, Gromov' s radius and the structure of ruled symplectic 4-manifolds.
In this paper, we consider the natural complex Hamiltonian systems with homogeneous potential , , of degree . The known results of Morales and Ramis give necessary conditions for the complete integrability of such systems. These conditions are expressed in terms of the eigenvalues of the Hessian matrix calculated at a non-zero point , such that . The main aim of this paper is to show that there are other obstructions for the integrability which appear if the matrix is not diagonalizable....
This talk is concerned with the Kolmogorov-Arnold-Moser (KAM) theorem in Gevrey classes for analytic hamiltonians, the effective stability around the corresponding KAM tori, and the semi-classical asymptotics for Schrödinger operators with exponentially small error terms. Given a real analytic Hamiltonian close to a completely integrable one and a suitable Cantor set defined by a Diophantine condition, we find a family , of KAM invariant tori of with frequencies which is Gevrey smooth with...
We generalize the construction of Maslov-Trofimov characteristic classes to the case of some G-manifolds and use it to study certain hamiltonian systems.
A toute deux-forme fermée, sur une variété connexe, on associe une famille d’extensions centrales du groupe de ses automorphismes par son tore des périodes. On discute ensuite quelques propriétés de cette construction.