The geography of simply-connected symplectic manifolds
By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain is covered by minimal, simply connected, symplectic 4-manifolds.
By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain is covered by minimal, simply connected, symplectic 4-manifolds.
We give a geometric construction of the phase space of the elliptic Calogero-Moser system for arbitrary root systems, as a space of Weyl invariant pairs (bundles, Higgs fields) on the -th power of the elliptic curve, where is the rank of the root system. The Poisson structure and the Hamiltonians of the integrable system are given natural constructions. We also exhibit a curious duality between the spectral varieties for the system associated to a root system, and the Lagrangian varieties for...
We propose a new family of natural generalizations of the pentagram map from 2D to higher dimensions and prove their integrability on generic twisted and closed polygons. In dimension there are such generalizations called dented pentagram maps, and we describe their geometry, continuous limit, and Lax representations with a spectral parameter. We prove algebraic-geometric integrability of the dented pentagram maps in the 3D case and compare the dimensions of invariant tori for the dented maps...
Nondegeneracy conditions need to be imposed in K.A.M. theorems to insure that the set of diophantine tori has a large measure. Although they are usually expressed in action coordinates, it is possible to give a geometrical formulation using the notion of regular completely integrable systems defined by a fibration of a symplectic manifold by lagrangian tori together with a Hamiltonian function constant on the fibers. In this paper, we give a geometrical definition of different nondegeneracy conditions,...
A new algorithm for finding separation coordinates is tested on the example of Kowalev ski’s top.
We discuss the motion of the three-dimensional rigid body about a fixed point under the influence of gravity, more specifically from the point of view of its symplectic structures and its constants of the motion. An obvious symmetry reduces the problem to a Hamiltonian flow on a four-dimensional submanifold of ; they are the customary Euler-Poisson equations. This symplectic manifold can also be regarded as a coadjoint orbit of the Lie algebra of the semi-direct product group with its natural...
In questo lavoro si ricavano: 1) l'equazione d'onda linearizzata, 2) la formulazione Lagrangiana, 3) la formulazione Hamiltoniana, nella teoria della propagazione ondosa in un fluido comprimibile descritto dalle equazioni della magnetofluidodinamica ideale in presenza di corrente Hall.