Displaying 101 – 120 of 912

Showing per page

Bifurcation of periodic and chaotic solutions in discontinuous systems

Michal Fečkan (1998)

Archivum Mathematicum

Chaos generated by the existence of Smale horseshoe is the well-known phenomenon in the theory of dynamical systems. The Poincaré-Andronov-Melnikov periodic and subharmonic bifurcations are also classical results in this theory. The purpose of this note is to extend those results to ordinary differential equations with multivalued perturbations. We present several examples based on our recent achievements in this direction. Singularly perturbed problems are studied as well. Applications are given...

Bifurcations in symplectic space

G. Ishikawa, S. Janeczko (2008)

Banach Center Publications

In this paper we take new steps in the theory of symplectic and isotropic bifurcations, by solving the classification problem under a natural equivalence in several typical cases. Moreover we define the notion of coisotropic varieties and formulate also the coisotropic bifurcation problem. We consider several symplectic invariants of isotropic and coisotropic varieties, providing illustrative examples in the simplest non-trivial cases.

Blow up of mechanical systems with a homogeneous energy.

Ernesto A. Lacomba, John Bryant, Luis Alberto Ibort (1991)

Publicacions Matemàtiques

By using the ideas introduced by McGehee in the study of the singularities in some problems of Celestial Mechanics, we study the singularities at the origin and at the infinity for some classical mechanical systems with homogeneous kinetic and potential energy functions. For these systems the origin and the infinity of the configuration coordinates is usually a singularity or a nullity of the Hamiltonian function and the verctor field. This work generalizes a previous one by the first and the third...

Borel summation and splitting of separatrices for the Hénon map

Vassili Gelfreich, David Sauzin (2001)

Annales de l’institut Fourier

We study two complex invariant manifolds associated with the parabolic fixed point of the area-preserving Hénon map. A single formal power series corresponds to both of them. The Borel transform of the formal series defines an analytic germ. We explore the Riemann surface and singularities of its analytic continuation. In particular we give a complete description of the “first” singularity and prove that a constant, which describes the splitting of the invariant manifolds, does not vanish. An interpretation...

Currently displaying 101 – 120 of 912