KP trigonometric solitons and an adelic flag manifold.
We generalize the construction of Maslov-Trofimov characteristic classes to the case of some G-manifolds and use it to study certain hamiltonian systems.
We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation on the half-line . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane , having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data...
We derive the modulation equations (Whitham equations) for the Camassa-Holm (CH) equation. We show that the modulation equations are hyperbolic and admit a bi-Hamiltonian structure. Furthermore they are connected by a reciprocal transformation to the modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation. The reciprocal transformation is generated by the Casimir of the second Poisson bracket of the KdV averaged flow. We show that the geometry...
In this paper we describe a non-local moving frame along a curve of pure spinors in , and its associated basis of differential invariants. We show that the space of differential invariants of Schwarzian-type define a Poisson submanifold of the spinor Geometric Poisson brackets. The resulting restriction is given by a decoupled system of KdV Poisson structures. We define a generalization of the Schwarzian-KdV evolution for pure spinor curves and we prove that it induces a decoupled system of KdV...