Real Hamiltonian forms of affine Toda models related to exceptional Lie algebras.
This text deals with inverse spectral theory in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.
Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum of a Zakharov-Shabat operator is symmetric,i.e. for all , if and only if the sequence of gap lengths, , is symmetric with respect to .
Some of the completely integrable Hamiltonian systems obtained through Adler-Kostant-Symes theorem rely on two distinct Lie algebra structures on the same underlying vector space. We study here the cases when two structures are linked together by deformations.