Previous Page 2

Displaying 21 – 37 of 37

Showing per page

On the integrability of the generalized Yang-Mills system

A. Lesfari, A. Elachab (2004)

Applicationes Mathematicae

We consider a hamiltonian system which, in a special case and under the gauge group SU(2), can be considered as a reduction of the Yang-Mills field equations. We prove explicitly, using the Lax spectral curve technique and the van Moerbeke-Mumford method, that the flows generated by the constants of motion are straight lines on the Jacobi variety of a genus two Riemann surface.

Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function

Yuji Kodama, Shigeki Matsutani, Emma Previato (2013)

Annales de l’institut Fourier

A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms...

The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations

Luc Haine (2005)

Annales de l’institut Fourier

The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda g -soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s q -Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.

Currently displaying 21 – 37 of 37

Previous Page 2