Results and conjectures about order Lyness' difference equation in , with a particular study of the case .
In this paper, we study the relation between the deficiencies concerning a meromorphic function f(z), its derivative f′(z) and differential-difference monomials f(z)mf(z+c)f′(z), f(z+c)nf′(z), f(z)mf(z+c). The main results of this paper are listed as follows: Let f(z) be a meromorphic function of finite order satisfying lim sup r→+∞ T(r, f) T(r, f ′ ) <+∞, and c be a non-zero complex constant, then δ(∞, f(z)m f(z+c)f′(z))≥δ(∞, f′) and δ(∞,f(z+c)nf′(z))≥ δ(∞, f′). We also investigate the value...
In this paper we recall discrete order preserving property related to the discrete Riccati matrix equation. We present results obtained by applying this property to the solutions of the Riccati matrix differential equation.
The Ruelle operator and the associated Perron-Frobenius property have been extensively studied in dynamical systems. Recently the theory has been adapted to iterated function systems (IFS) , where the ’s are contractive self-maps on a compact subset and the ’s are positive Dini functions on X [FL]. In this paper we consider Ruelle operators defined by weakly contractive IFS and nonexpansive IFS. It is known that in such cases, positive bounded eigenfunctions may not exist in general. Our theorems...
A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.
The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.
We shall investigate the properties of solutions of second order linear difference equations defined over a discrete Hardy field via canonical valuations.
The paper can be understood as a completion of the -Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear -difference equations. The -Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice with . In addition to recalling the existing concepts of -regular variation and -rapid variation we introduce -regularly bounded functions and prove many related properties. The -Karamata theory is then...
For every , we produce a set of integers which is -recurrent but not -recurrent. This extends a result of Furstenberg who produced a -recurrent set which is not -recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.
Existence and uniqueness conditions for solving singular initial and two-point boundary value problems for discrete generalized Lyapunov matrix equations and explicit expressions of solutions are given.