Extensions of the Heisenberg-Weyl inequality.
On étudie en détail une décomposition microlocale analytique de la distribution suivant des distributions singulières en un seul point et dans une seule codirection. Cette décomposition est obtenue à partir d’opérateurs Fourier-Intégraux à phases complexes.On utilise ensuite cet outil pour démontrer le théorème de décomposition du front d’onde analytique des distributions. On établit également des théorèmes concernant la représentation globale des distributions comme sommes de valeurs au bord...
In this paper we continue the study of the Fourier transform on , , analyzing the “almost-orthogonality” of the different directions of the space with respect to the Fourier transform. We prove two theorems: the first is related to an angular Littlewood-Paley square function, and we obtain estimates in terms of powers of , where is the number of equal angles considered in . The second is an extension of the Hardy-Littlewood maximal function when one consider cylinders of , , of fixed eccentricity...
There is no constraint on the relation between the Fourier and Hausdorff dimension of a set beyond the condition that the Fourier dimension must not exceed the Hausdorff dimension.