Function Algebras and Flows. III.
In this paper, we analyze multi-dimensional quasi-asymptotically -almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl -almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically -almost periodic functions and reconsider the notion of semi--periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain...
We show that when is a mean periodic function of tempered growth on the reduced Heisenberg group then the closed translation and rotation invariant subspace generated by contains an elementary spherical function. Using a Paley-Wiener theorem for the Fourier-Weyl transform we formulate a conjecture for arbitrary mean periodic functions.
2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63Using a convolution structure on the real line associated with the Jacobi-Dunkl differential-difference operator Λα,β given by: Λα,βf(x) = f'(x) + ((2α + 1) coth x + (2β + 1) tanh x) { ( f(x) − f(−x) ) / 2 }, α ≥ β ≥ −1/2 , we define mean-periodic functions associated with Λα,β. We characterize these functions as an expansion series intervening appropriate elementary functions expressed in terms of the derivatives of the...
This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown...
In this paper, a generalization of a result on the uniform best approximation of α cos nx + β sin nx by trigonometric polynomials of degree less than n is considered and its relationship with a well-known polynomial inequality of C. Visser is indicated.
We consider multi-dimensional Hartman almost periodic functions and sequences, defined with respect to different averaging sequences of subsets in or . We consider the behavior of their Fourier-Bohr coefficients and their spectrum, depending on the particular averaging sequence, and we demonstrate this dependence by several examples. Extensions to compactly generated, locally compact, abelian groups are considered. We define generalized Marcinkiewicz spaces based upon arbitrary measure spaces...
We investigate some convergence questions in the class of Besicovitch-Orlicz spaces of vector valued functions. Next, the existence problem of the projection operator on closed convex subsets is considered in the class of almost periodic functions. This problem was considered in [5], in the case of an Orlicz space. The approximation property obtained in both cases are of the same kind. However, the arguments which are used in the proofs are different.
In this article, it is shown that geometrical properties such as local uniform convexity, mid point local uniform convexity, H-property and uniform convexity in every direction are equivalent in the Besicovitch-Musielak-Orlicz space of almost periodic functions endowed with the Luxemburg norm.