On Littlewood-Paley functions
It is a survey talk concerning locally bounded algebras.
We investigate some convergence questions in the class of Besicovitch-Orlicz spaces of vector valued functions. Next, the existence problem of the projection operator on closed convex subsets is considered in the class of almost periodic functions. This problem was considered in [5], in the case of an Orlicz space. The approximation property obtained in both cases are of the same kind. However, the arguments which are used in the proofs are different.
* The author was supported by NSF Grant No. DMS 9706883.Let P be a bi-variate algebraic polynomial of degree n with the real senior part, and Y = {yj }1,n an n-element collection of pairwise noncolinear unit vectors on the real plane. It is proved that there exists a rigid rotation Y^φ of Y by an angle φ = φ(P, Y ) ∈ [0, π/n] such that P equals the sum of n plane wave polynomials, that propagate in the directions ∈ Y^φ .
In this article, it is shown that geometrical properties such as local uniform convexity, mid point local uniform convexity, H-property and uniform convexity in every direction are equivalent in the Besicovitch-Musielak-Orlicz space of almost periodic functions endowed with the Luxemburg norm.
The paper is concerned with the characterization and comparison of some local geometric properties of the Besicovitch-Orlicz space of almost periodic functions. Namely, it is shown that local uniform convexity, -property and strict convexity are all equivalent. In our approach, we first prove some metric type properties for the modular function associated to our space. These are then used to prove our main equivalence result.
2000 Mathematics Subject Classification: Primary: 42A05. Secondary: 42A82, 11N05.The prime number theorem with error term presents itself as &pi'(x) = ∫2x [dt/ logt] + O ( x e- K logL x). In 1909, Edmund Landau provided a systematic analysis of the proof seeking better values of L and K. At a key point of his 1899 proof de la Vallée Poussin made use of the nonnegative trigonometric polynomial 2/3 (1+cos x)2 = 1+4/3 cosx +1/3 cos2x. Landau considered more general positive definite nonnegative...