The search session has expired. Please query the service again.
We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.
Let , . We construct Dirichlet series where for each fixed in a half plane, , as a function of , is a non-synthesizable absolutely convergent Fourier series. Because of the way the frequencies in are chosen, we are motivated to introduce a class of synthesizable absolutely convergent Fourier series which are defined in terms of idele characters. We solve the “problem of analytic continuation” in this setting by constructing pseudo-measures, determined by idele characters, when .
Let be the Beurling algebra with weight on the unit circle and, for a closed set , let . We prove that, for , there exists a closed set of measure zero such that the quotient algebra is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras and the algebra of absolutely continuous functions on , we characterize the closed sets for which the restriction algebras and are generated by their idempotents.
Modelling of building heat transfer needs two basic material characteristics: heat conduction factor and thermal capacity. Under some simplifications these two factors can be determined from a rather simple equipment, generating heat from one of two aluminium plates into the material sample and recording temperature on the contacts between the sample and the plates. However, the numerical evaluation of both characteristics leads to a non-trivial optimization problem. This article suggests an efficient...
A simple and fast algorithm is presented for evaluating the indefinite integral of an oscillatory function , -1 ≤ x < y ≤ 1, ω ≠ 0, where the Chebyshev series expansion of the function f is known. The final solution, expressed as a finite Chebyshev series, is obtained by solving a second-order linear difference equation. Because of the nature of the equation special algorithms have to be used to find a satisfactory approximation to the integral.
We prove:
(I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have
,
with the best possible constant bounds
α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3.
(II) The inequality
holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].
We study weighted -integrability (1 ≤ p < ∞) of trigonometric series. It is shown how the integrability of a function with weight depends on some regularity conditions on Fourier coefficients. Criteria for the uniform convergence of trigonometric series in terms of their coefficients are also studied.
Integrability and convergence of modified cosine sums introduced by Rees and Stanojević under a class of generalized semi-convex null coefficients are studied by using Cesàro means of non-integral orders.
Currently displaying 1 –
20 of
35