Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Ideal norms and trigonometric orthonormal systems

Jörg Wenzel (1994)

Studia Mathematica

We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.

Idele characters in spectral synthesis on 𝐑 / 2 π 𝐙

John J. Benedetto (1973)

Annales de l'institut Fourier

Let s C , x R / 2 π Z . We construct Dirichlet series F ( x , x ) where for each fixed s in a half plane, Re F ( x , x ) , as a function of x , is a non-synthesizable absolutely convergent Fourier series. Because of the way the frequencies in F are chosen, we are motivated to introduce a class of synthesizable absolutely convergent Fourier series which are defined in terms of idele characters. We solve the “problem of analytic continuation” in this setting by constructing pseudo-measures, determined by idele characters, when Re s 1 .

Idempotents in quotients and restrictions of Banach algebras of functions

Thomas Vils Pedersen (1996)

Annales de l'institut Fourier

Let 𝒜 β be the Beurling algebra with weight ( 1 + | n | ) β on the unit circle 𝕋 and, for a closed set E 𝕋 , let J 𝒜 β ( E ) = { f 𝒜 β : f = 0 on a neighbourhood of E } . We prove that, for β > 1 2 , there exists a closed set E 𝕋 of measure zero such that the quotient algebra 𝒜 β / J 𝒜 β ( E ) is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras λ γ and the algebra 𝒜 𝒞 of absolutely continuous functions on 𝕋 , we characterize the closed sets E 𝕋 for which the restriction algebras λ γ ( E ) and 𝒜 𝒞 ( E ) are generated by their idempotents.

Identification of basic thermal technical characteristics of building materials

Stanislav Šťastník, Jiří Vala, Hana Kmínová (2007)

Kybernetika

Modelling of building heat transfer needs two basic material characteristics: heat conduction factor and thermal capacity. Under some simplifications these two factors can be determined from a rather simple equipment, generating heat from one of two aluminium plates into the material sample and recording temperature on the contacts between the sample and the plates. However, the numerical evaluation of both characteristics leads to a non-trivial optimization problem. This article suggests an efficient...

Indefinite integration of oscillatory functions

Paweł Keller (1998)

Applicationes Mathematicae

A simple and fast algorithm is presented for evaluating the indefinite integral of an oscillatory function x y i f ( t ) e i ω t d t , -1 ≤ x < y ≤ 1, ω ≠ 0, where the Chebyshev series expansion of the function f is known. The final solution, expressed as a finite Chebyshev series, is obtained by solving a second-order linear difference equation. Because of the nature of the equation special algorithms have to be used to find a satisfactory approximation to the integral.

Inequalities for two sine polynomials

Horst Alzer, Stamatis Koumandos (2006)

Colloquium Mathematicae

We prove: (I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have α j = 1 n - 1 1 / ( n ² - j ² ) s i n ( j x ) β , with the best possible constant bounds α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3. (II) The inequality 0 < j = 1 n - 1 ( n ² - j ² ) s i n ( j x ) holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].

Currently displaying 1 – 20 of 35

Page 1 Next