C1 Changes of Variable: Beurling-Helson Type Theorem and Hörmander Conjecture on Fourier Multipliers.
Carleson's Theorem from 1965 states that the partial Fourier sums of a square integrable function converge pointwise. We prove an equivalent statement on the real line, following the method developed by the author and C. Thiele. This theorem, and the proof presented, is at the center of an emerging theory which complements the statement and proof of Carleson's theorem. An outline of these variations is also given.
Let the coefficients of a lacunary cosine series be bounded and not square-summable. Then the partial sums of the series are recurrent.
We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from to then it is also bounded from the classical Hardy space to (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from to (3/4 < p ≤ ∞) and is of weak type . We define the two-dimensional dyadic hybrid Hardy space and verify that the maximal operator of the Cesàro means of a two-dimensional...
Let be a finite subset of an abelian group and let be a closed half-plane of the complex plane, containing zero. We show that (unless possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of which belongs to . In other words, there exists a non-trivial character such that .
Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on .
We introduce the new class of Besicovitch-Musielak-Orlicz almost periodic functions and consider its strict convexity with respect to the Luxemburg norm.