-convergence of modified complex trigonometric sums.
We prove the boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function . Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.
Let be the singular measure on the Heisenberg group supported on the graph of the quadratic function , where is a real symmetric matrix. If , we prove that the operator of convolution by on the right is bounded from to . We also study the type set of the measures , for , where is a cut-off function around the origin on . Moreover, for we characterize the type set of .
A measure is called -improving if it acts by convolution as a bounded operator from to for some q > p. Positive measures which are -improving are known to have positive Hausdorff dimension. We extend this result to complex -improving measures and show that even their energy dimension is positive. Measures of positive energy dimension are seen to be the Lipschitz measures and are characterized in terms of their improving behaviour on a subset of -functions.
We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by , where , w = (w₁,...,wₙ) ∈ ℂⁿ, , and η(w) = η₀(|w|²) with . We characterize the set of pairs (p,q) such that the convolution operator with ν is bounded. We also obtain -improving properties of measures supported on the graph of the function .
We present an estimation of the and means as approximation versions of the Totik type generalization (see [5], [6]) of the result of G. H. Hardy, J. E. Littlewood. Some corollaries on the norm approximation are also given.
A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.