Page 1 Next

Displaying 1 – 20 of 60

Showing per page

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Endpoint multiplier theorems of Marcinkiewicz type.

Terence Tao, James Wright (2001)

Revista Matemática Iberoamericana

We establish sharp (H1,L1,q) and local (L logrL,L1,q) mapping properties for rough one-dimensional multipliers. In particular, we show that the multipliers in the Marcinkiewicz multiplier theorem map H1 to L1,∞ and L log1/2L to L1,∞, and that these estimates are sharp.

Energy of measures on compact Riemannian manifolds

Kathryn E. Hare, Maria Roginskaya (2003)

Studia Mathematica

We investigate the energy of measures (both positive and signed) on compact Riemannian manifolds. A formula is given relating the energy integral of a positive measure with the projections of the measure onto the eigenspaces of the Laplacian. This formula is analogous to the classical formula comparing the energy of a measure in Euclidean space with a weighted L² norm of its Fourier transform. We show that the boundedness of a modified energy integral for signed measures gives bounds on the Hausdorff...

Ensembles boréliens d'unicité et d'unicité au sens large

Gabriel Debs, Jean Saint Raymond (1987)

Annales de l'institut Fourier

Soit 𝒰 (resp. 𝒰 0 ) l’ensemble des compacts d’unicité (resp. d’unicité au sens large) du tore T . On montre qu’un borélien de T dont tout sous-compact est dans 𝒰 0 est nécessairement contenu dans une réunion dénombrable de compacts de 𝒰 0 , et on montre que cette propriété n’est plus vraie quand on remplace 𝒰 0 par 𝒰 .Comme conséquence on obtient qu’un borélien qui est d’unicité est nécessairement maigre. On en déduit aussi l’existence d’un compact d’unicité qui ne peut être recouvert par une suite de compacts...

Ensembles de Sidon topologiques

Myriam Dechamps-Gondim (1972)

Annales de l'institut Fourier

On étudie les ensembles de Sidon d’un groupe abélien localement compact et métrisable Γ . Après avoir démontré des résultats sur la réunion, l’élargissement et la stabilité de ces ensembles lacunaires, on détaille le résultat fondamental de ce travail : lorsque le dual G de Γ est connexe, toute partie compacte d’intérieur non vide de G est associée à tout ensemble de Sidon de Λ . Autrement dit, étant donné un compact K d’intérieur non vide de G , toute fonction bornée à valeurs complexes définie sur...

Currently displaying 1 – 20 of 60

Page 1 Next