Displaying 81 – 100 of 230

Showing per page

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x) in L p norm.

On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions

Mohamed Morsli (1997)

Commentationes Mathematicae Universitatis Carolinae

We investigate some convergence questions in the class of Besicovitch-Orlicz spaces of vector valued functions. Next, the existence problem of the projection operator on closed convex subsets is considered in the class of almost periodic functions. This problem was considered in [5], in the case of an Orlicz space. The approximation property obtained in both cases are of the same kind. However, the arguments which are used in the proofs are different.

On Representations of Algebraic Polynomials by Superpositions of Plane Waves

Oskolkov, K. (2002)

Serdica Mathematical Journal

* The author was supported by NSF Grant No. DMS 9706883.Let P be a bi-variate algebraic polynomial of degree n with the real senior part, and Y = {yj }1,n an n-element collection of pairwise noncolinear unit vectors on the real plane. It is proved that there exists a rigid rotation Y^φ of Y by an angle φ = φ(P, Y ) ∈ [0, π/n] such that P equals the sum of n plane wave polynomials, that propagate in the directions ∈ Y^φ .

Currently displaying 81 – 100 of 230