Distributional boundary values and the tempered ultra-distributions
We costruct functions in () whose Fourier integral expansions are almost everywhere non-summable with respect to the Bochner-Riesz means of the critical order.
2000 Mathematics Subject Classification: Primary 42A38. Secondary 42B10.The purpose of this paper is to study the dispersive properties of the solutions of the Dunkl-Schrödinger equation and their perturbations with potential. Furthermore, we consider a few applications of these results to the corresponding nonlinear Cauchy problems.
We consider elementary operators , acting on a unital Banach algebra, where and are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families and , i.e. (), where all and ( and ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class of functions...
We investigate the Fourier transforms of functions in the Sobolev spaces . It is proved that for any function the Fourier transform f̂ belongs to the Lorentz space , where . Furthermore, we derive from this result that for any mixed derivative the weighted norm can be estimated by the sum of -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.
The two-dimensional classical Hardy spaces are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from to (1/2 < p ≤ ∞) and is of weak type where the Hardy space is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ ⊃ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on whenever 1/2 < p < ∞. Thus, in case f ∈ , the Fejér means...
In questo lavoro facciamo vedere, con un argomento di omogeneità di tipo Knapp, che se vale un teorema di restrizione per una ipersuperficie compatta, convessa e di tipo finito, allora si possono provare stime isotropiche ottimali per la trasformata di Fourier della misura di indotta dalla misura di Lebesgue sulla superficie.