Displaying 81 – 100 of 164

Showing per page

Non-homogeneous strongly singular integrals

Bassam Shayya (2008)

Studia Mathematica

We study the L p mapping properties of a family of strongly singular oscillatory integral operators on ℝⁿ which are non-homogeneous in the sense that their kernels have isotropic oscillations but non-isotropic singularities.

Non-isotropic distance measures for lattice-generated sets.

Alexander Iosevich, Misha Rudnev (2005)

Publicacions Matemàtiques

We study distance measures for lattice-generated sets in Rd, d>=3, with respect to non-isotropic distances l-l.K, induced by smooth symmetric convex bodies K. An effective Fourier-analytic approach is developed to get sharp upper bounds for the second moment of the weighted distance measure.

On bilinear Littlewood-Paley square functions.

Michael T. Lacey (1996)

Publicacions Matemàtiques

On the real line, let the Fourier transform of kn be k'n(ξ) = k'(ξ-n) where k'(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x+y)g(x-y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove thatΣ∞n=-∞ ||Sn(f,g)||22 ≤ C2||f||p2||g||q2.The constant C depends only upon k.

On Falconer's distance set conjecture.

M. Burak Erdogan (2006)

Revista Matemática Iberoamericana

In this paper, using a recent parabolic restriction estimate of Tao, we obtain improved partial results in the direction of Falconer's distance set conjecture in dimensions d ≥ 3.

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

On summability of measures with thin spectra

Maria Roginskaya, Michaël Wojciechowski (2004)

Annales de l’institut Fourier

We study different conditions on the set of roots of the Fourier transform of a measure on the Euclidean space, which yield that the measure is absolutely continuous with respect to the Lebesgue measure. We construct a monotone sequence in the real line with this property. We construct a closed subset of d which contains a lot of lines of some fixed direction, with the property that every measure with spectrum contained in this set is absolutely continuous. We also give examples of sets with such property...

On the Fourier transform, Boehmians, and distributions

Dragu Atanasiu, Piotr Mikusiński (2007)

Colloquium Mathematicae

We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.

On the Fourier transform of the symmetric decreasing rearrangements

Philippe Jaming (2011)

Annales de l’institut Fourier

Inspired by work of Montgomery on Fourier series and Donoho-Strak in signal processing, we investigate two families of rearrangement inequalities for the Fourier transform. More precisely, we show that the L 2 behavior of a Fourier transform of a function over a small set is controlled by the L 2 behavior of the Fourier transform of its symmetric decreasing rearrangement. In the L 1 case, the same is true if we further assume that the function has a support of finite measure.As a byproduct, we also give...

Currently displaying 81 – 100 of 164