Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains.
Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.
We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.
Let L = -Δ + V be a Schrödinger operator in and be the Hardy type space associated to L. We investigate the bilinear operators T⁺ and T¯ defined by , where T₁ and T₂ are Calderón-Zygmund operators related to L. Under some general conditions, we prove that either T⁺ or T¯ is bounded from to for 1 < p,q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.
We consider discrete versions of Morrey spaces introduced by Gunawan et al. in papers published in 2018 and 2019. We prove continuity and compactness of multiplication operators and commutators acting on them.
We obtain a necessary and sufficient condition for boundedness of commutators of certain oscillatory integral operators and Lipschitz functions.
In the setting of spaces of homogeneous type, it is shown that the commutator of Calderón-Zygmund type operators as well as the commutator of a potential operator with a BMO function are bounded in a generalized grand Morrey space. Interior estimates for solutions of elliptic equations are also given in the framework of generalized grand Morrey spaces.
The author investigates the boundedness of the higher order commutator of strongly singular convolution operator, , on Herz spaces and , and on a new class of Herz-type Hardy spaces and , where 0 < p ≤ 1 < q < ∞, α = n(1-1/q) and b ∈ BMO(ℝⁿ).
We study Fourier integral operators of Hörmander’s type acting on the spaces , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on if the mapping is constant on the fibres, of codimension r, of an affine...
In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces for , and . Specifically, we show that, for suitable values of and , if (Sawyer’s classes of weights) then the one-sided fractional integral can be extended to a bounded operator from to . The result is a consequence of the pointwise inequality where denotes the Calderón maximal function.
Let w be in the Muckenhoupt weight class. We show that the Riesz transforms are bounded on the weighted Carleson measure space , the dual of the weighted Hardy space , 0 < p ≤ 1.
We introduce a new type of variable exponent function spaces of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents and are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO...
Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space to a quasi-Banach space ℬ if and only if sup: a is an infinitely differentiable (p,q,s)-atom of < ∞, where the (p,q,s)-atom of is as defined by Han, Paluszyński and Weiss.
The aim of the present paper is to obtain an inequality of Brézis-Gallouët-Wainger type for Besov-Morrey spaces. We investigate these spaces in a self-contained manner. Also, we verify that our result is sharp.
We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in . Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.
We characterize associate spaces of generalized weighted weak-Lorentz spaces and use this characterization to study embeddings between these spaces.
We consider central versions of the space studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator.
The spaces of entire functions represented by Dirichlet series have been studied by Hussein and Kamthan and others. In the present paper we consider the space of all entire functions defined by vector-valued Dirichlet series and study the properties of a sequence space which is defined using the type of an entire function represented by vector-valued Dirichlet series. The main result concerns with obtaining the nature of the dual space of this sequence space and coefficient multipliers for some...