Norm inequalities in some subspaces of Morrey space
We give norm inequalities for some classical operators in amalgam spaces and in some subspaces of Morrey space.
We give norm inequalities for some classical operators in amalgam spaces and in some subspaces of Morrey space.
We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces . This space has been introduced and the result for has been proved in Ding, Zhu (2017). In this paper, for , we establish its dual space .
We consider multi-dimensional Hartman almost periodic functions and sequences, defined with respect to different averaging sequences of subsets in or . We consider the behavior of their Fourier-Bohr coefficients and their spectrum, depending on the particular averaging sequence, and we demonstrate this dependence by several examples. Extensions to compactly generated, locally compact, abelian groups are considered. We define generalized Marcinkiewicz spaces based upon arbitrary measure spaces...
Mathematics Subject Classification: Primary 42B20, 42B25, 42B35In this paper we study the Riesz potentials (B-Riesz potentials) generated by the Laplace-Bessel differential operator ∆B [...]. We establish an inequality of Stein-Weiss type for the B-Riesz potentials in the limiting case, and obtain the boundedness of the B-Riesz potential operator from the space Lp,|x|β,γ to BMO|x|−λ,γ.* Emin Guliyev’s research partially supported by the grant of INTAS YS Collaborative Call with Azerbaijan 2005...
2000 Mathematics Subject Classification: 42B20, 42B25, 42B35Let K = [0, ∞)×R be the Laguerre hypergroup which is the fundamental manifold of the radial function space for the Heisenberg group. In this paper we consider the generalized shift operator, generated by Laguerre hypergroup, by means of which the maximal function is investigated. For 1 < p ≤ ∞ the Lp(K)-boundedness and weak L1(K)-boundedness result for the maximal function is obtained.* V. Guliyev partially supported by grant of INTAS...
We prove two-weighted norm estimates for higher order commutator of singular integral and fractional type operators between weighted and certain spaces that include Lipschitz, BMO and Morrey spaces. We also give the optimal parameters involved with these results, where the optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region out of which the classes of weights are satisfied by trivial weights. We also exhibit pairs of nontrivial...
For 1 ≤ q ≤ α ≤ p ≤ ∞, is a complex Banach space which is continuously included in the Wiener amalgam space and contains the Lebesgue space . We study the closure in of the space of test functions (infinitely differentiable and with compact support in ) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space (a subspace of a Morrey-Sobolev space, but a superspace of the classical Sobolev space ) and obtain...
In the half-space , consider the Hermite-Schrödinger equation i∂u/∂t = -Δu + |x|²u, with given boundary values on . We prove a formula that links the solution of this problem to that of the classical Schrödinger equation. It shows that mixed norm estimates for the Hermite-Schrödinger equation can be obtained immediately from those known in the classical case. In one space dimension, we deduce sharp pointwise convergence results at the boundary by means of this link.
In the paper we find conditions on the pair which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space to another , , and from the space to the weak space . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.
Let be a metric measure space satisfying the doubling condition and an -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on . We will show that a solution to on satisfies an -Carleson condition if and only if can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space , where is a nonnegative function defined on a class of balls in . This result extends the analogous characterization founded...
Considering functions f on ℝⁿ for which both f and f̂ are bounded by the Gaussian , 0 < a < 1, we show that their Fourier-Hermite coefficients have exponential decay. Optimal decay is obtained for O(n)-finite functions, thus extending a one-dimensional result of Vemuri.
We show that the functions in L2(Rn) given by the sum of infinitely sparse wavelet expansions are regular, i.e. belong to C∞L2 (x0), for all x0 ∈ Rn which is outside of a set of vanishing Hausdorff dimension.
We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.
We investigate weak type estimates for maximal functions, fractional and singular integrals in grand Lebesgue spaces. In particular, we show that for the one-weight weak type inequality it is necessary and sufficient that a weight function belongs to the appropriate Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and singular integrals with product kernels.
Recently it was proved for 1 < p < ∞ that , a modulus of smoothness on the unit sphere, and , a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence does not hold either for p = ∞ or for p = 1.