Displaying 361 – 380 of 1022

Showing per page

In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc

Nikolai Nikolski (2012)

Annales de l’institut Fourier

Completeness of a dilation system ( ϕ ( n x ) ) n 1 on the standard Lebesgue space L 2 ( 0 , 1 ) is considered for 2-periodic functions ϕ . We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space H 2 ( 𝔻 2 ) on the Hilbert multidisc 𝔻 2 . Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity...

Inequivalence of Wavelet Systems in L ( d ) and B V ( d )

Paweł Bechler (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Theorems stating sufficient conditions for the inequivalence of the d-variate Haar wavelet system and another wavelet system in the spaces L ( d ) and B V ( d ) are proved. These results are used to show that the Strömberg wavelet system and the system of continuous Daubechies wavelets with minimal supports are not equivalent to the Haar system in these spaces. A theorem stating that some systems of smooth Daubechies wavelets are not equivalent to the Haar system in L ( d ) is also shown.

Ingham type theorems and applications to control theory

Claudio Baiocchi, Vilmos Komornik, Paola Loreti (1999)

Bollettino dell'Unione Matematica Italiana

Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risultati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3], Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a problemi di osservabilità simultanea.

Integrability theorems for trigonometric series

Bruce Aubertin, John Fournier (1993)

Studia Mathematica

We show that, if the coefficients (an) in a series a 0 / 2 + n = 1 a n c o s ( n t ) tend to 0 as n → ∞ and satisfy the regularity condition that m = 0 j = 1 [ n = j 2 m ( j + 1 ) 2 m - 1 | a n - a n + 1 | ] ² 1 / 2 < , then the cosine series represents an integrable function on the interval [-π,π]. We also show that, if the coefficients (bn) in a series n = 1 b n s i n ( n t ) tend to 0 and satisfy the corresponding regularity condition, then the sine series represents an integrable function on [-π,π] if and only if n = 1 | b n | / n < . These conclusions were previously known to hold under stronger restrictions on the sizes of the differences...

Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets

Fitouhi, Ahmed, Bettaibi, Néji, Binous, Wafa (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators of the q-Riemann-Liouville and...

Currently displaying 361 – 380 of 1022