Lₚ-deviations from zero of polynomials with integral coefficients
We obtain sharp power-weighted , weak type and restricted weak type inequalities for the heat and Poisson integral maximal operators, Riesz transform and a Littlewood-Paley type square function, emerging naturally in the harmonic analysis related to Bessel operators.
In this paper we give some criteria for the existence of compactly supported -solutions ( is an integer and ) of matrix refinement equations. Several examples are presented to illustrate the general theory.
The main aim of this paper is to prove that the maximal operator of the Fejér means of the double Vilenkin-Fourier series is not bounded from the Hardy space to the space weak-.
We establish new connections between some classes of lacunary sets. The main tool is the use of (p,q)-summing or weakly compact operators (for Riesz sets). This point of view provides new properties of stationary sets and allows us to generalize to more general abelian groups than the torus some properties of p-Sidon sets. We also construct some new classes of Riesz sets.
On associe à certaines suites de nombres complexes une mesure borélienne positive sur le tore dont la transformée de Fourier-Walsh est une suite de moyennes liées à . La nature de (discrète, continue) est discutée dans quelques cas : suites presque-périodiques et certaines suites arithmétiques.