Stable base change C / R of certain derived functor modules.
We consider the heat kernel corresponding to the left invariant sub-Laplacian with drift term in the first commutator of the Lie algebra, on a nilpotent Lie group. We improve the results obtained by G. Alexopoulos in [1], [2] proving the “exact Gaussian factor” exp(-|g|²/4(1+ε)t) in the large time upper Gaussian estimate for . We also obtain a large time lower Gaussian estimate for .
In this survey article, I shall give an overview on some recent developments concerning the -functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic -type, in the sense that every -spectral multiplier for will be holomorphic in some domain.