Calderón-Zygmund Kernels Carried by Linear Subspaces of Homogeneous Nilpotent Lie Algebras.
It is known that the dual of a compact, connected, non-abelian group may contain no infinite central Sidon sets, but always does contain infinite central -Sidon sets for We prove, by an essentially constructive method, that the latter assertion is also true for every infinite subset of the dual. In addition, we investigate the relationship between weighted central Sidonicity for a compact Lie group and Sidonicity for its torus.
We compare the Hausdorff measures and dimensions with respect to the Euclidean and Heisenberg metrics on the first Heisenberg group. The result is a dimension jump described by two inequalities. The sharpness of our estimates is shown by examples. Moreover a comparison between Euclidean and H-rectifiability is given.
We study continuous measures on a compact semisimple Lie group using representation theory. In Section 2 we prove a Wiener type characterization of a continuous measure. Next we construct central measures on which are related to the well known Riesz products on locally compact abelian groups. Using these measures we show in Section 3 that if is a compact set of continuous measures on there exists a singular measure such that is absolutely continuous with respect to the Haar measure on...
Nous présentons une condition suffisante pour qu’un compact dans le groupe de Heisenberg (muni de sa structure de Carnot-Carathéodory) soit contenu dans une courbe rectifiable. Cette condition est aussi nécessaire dans le cas de courbes régulières (en particulier, des géodésiques) et elle est inspirée du lemme géométrique faible du à Peter Jones dans le cas euclidien. Cette note repose sur l’exposé fait par le troisième auteur (au Séminaire X-EDP) et décrit les principaux résultats de l’article...