Loading [MathJax]/extensions/MathZoom.js
We consider a family of non-unimodular rank one NA-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable functional calculus for every p ≥ 1.
Let be the singular measure on the Heisenberg group supported on the graph of the quadratic function , where is a real symmetric matrix. If , we prove that the operator of convolution by on the right is bounded from to . We also study the type set of the measures , for , where is a cut-off function around the origin on . Moreover, for we characterize the type set of .
- boundedness properties are obtained for operators defined by convolution with measures supported on certain curves on the Heisenberg group. We find the curvature condition for which the type set of these operators can be the full optimal trapezoid with vertices A=(0,0), B=(1,1), C=(2/3,1/2), D=(1/2,1/3). We also give notions of right curvature and left curvature which are not mutually equivalent.
- estimates are obtained for convolution operators by finite measures supported on curves in the Heisenberg group whose tangent vector at the origin is parallel to the centre of the group.
We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by , where , w = (w₁,...,wₙ) ∈ ℂⁿ, , and η(w) = η₀(|w|²) with . We characterize the set of pairs (p,q) such that the convolution operator with ν is bounded. We also obtain -improving properties of measures supported on the graph of the function .
Partant de la représentation de l’algèbre de Lie du groupe (nilpotent, connexe et simplement connexe) par des opérateurs différentiels rationnels dont l’existence est liée à la conjecture de Gelfand et Kirillov et démontrée dans Nghiêm Xuân Hai (Ann. Inst. Fourier, 33-4 (1983), 95–133), on calcule explicitement la transformation de Fourier-Plancherel de . En particulier, on obtient la mesure de Plancherel comme une mesure à densité sur un ouvert de Zariski du spectre antihermitien du centre...
Dans l’algèbre enveloppante d’une algèbre de Lie résoluble, on construit un anneau de Weyl caractéristique, canonique et maximal. On peut alors représenter algébriquement l’algèbre de Lie comme des dérivations de cet anneau de Weyl à condition d’effacer un 2-cocycle canonique d’obstruction. Lorsque l’on utilise la représentation de Schrödinger de l’anneau de Weyl, on peut introduire une primitive analytique du 2-cocycle et obtenir une représentation de l’algèbre de Lie par des opérateurs différentiels...
Limit formulas for the computation of the canonical measure on a nilpotent coadjoint orbit in terms of the canonical measures on regular semisimple coadjoint orbits arise naturally in the study of invariant eigendistributions on a reductive Lie algebra. In the present paper we consider a particular type of the limit formula for canonical measures which was proposed by Rossmann. The main technical tool in our analysis are the results of Schmid and Vilonen on the equivariant sheaves on the flag variety...
In this paper we raise the question of regularity of the densities of a symmetric stable semigroup of measures on the homogeneous group N under the mere assumption that the densities exist. (For a criterion of the existence of the densities of such semigroups see [11].)
We give a characterization of the Hölder-Zygmund spaces () on a stratified Lie group in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on , in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces...
Let 𝔾 be a homogeneousgroup on ℝⁿ whose multiplication and inverse operations are polynomial maps. In 1999, T. Tao proved that the singular integral operator with Llog⁺L function kernel on ≫ is both of type (p,p) and of weak type (1,1). In this paper, the same results are proved for the Littlewood-Paley g-functions on 𝔾
Currently displaying 1 –
20 of
22