Displaying 641 – 660 of 2289

Showing per page

Étude de quelques propriétés des produits de Riesz

Jacques Peyrière (1975)

Annales de l'institut Fourier

On étudie les mesures définies sur T = R / 2 π Z par les produits j 0 ( 1 + Re ( a j e i λ j x ) ) , ( | a j | 1 , λ j entier, λ j + 1 / λ j 3 ) . Étant données deux telles mesures on donne des conditions assurant soit qu’elles sont étrangères, soit que l’une est absolument continue par rapport à l’autre. On donne une minoration de la dimension de Hausdorff des boréliens qui portent une telle mesure. On montre que certaines séries convergent presque partout par rapport à ces mesures. On en déduit, par exemple, que les ensembles x [ 0 , 2 π ] ; lim n + n - a j = 1 n e i λ j x = z , ( 1 2 < α < 1 , z C ) ont 1 pour dimension de Hausdorff. On étend...

Étude des coefficients de Fourier des fonctions de L p ( G )

Aline Bonami (1970)

Annales de l'institut Fourier

On étudie la décroissance à l’infini des coefficients de Fourier des fonctions 2 π -périodiques intégrables. Soit en particulier λ n une suite lacunaire d’entiers : λ n + 1 3 λ n . On appelle suite k -lacunaire associée la suite μ N k des entiers qui s’écrivent sous la forme ± λ n 1 ± λ n 2 ± ± λ n k , n 1 > n 2 > > n k . On montre que si 0 2 π | f | ( Log + | f | ) k / 2 d x est fini, il en est de même de N | f ^ ( μ N k ) | 2 . D’autre part, si λ n satisfait à une condition plus restrictive, quel que soit 1 < p 2 , si 0 2 π | f | p d x est fini il en est de même de k ( p - 1 ) N | f ^ ( μ N k ) | 2 . Ces résultats sont généralisés à d’autres groupes que R / 2 π Z , et à d’autres...

Exact Kronecker constants of Hadamard sets

Kathryn E. Hare, L. Thomas Ramsey (2013)

Colloquium Mathematicae

A set S of integers is called ε-Kronecker if every function on S of modulus one can be approximated uniformly to within ε by a character. The least such ε is called the ε-Kronecker constant, κ(S). The angular Kronecker constant is the unique real number α(S) ∈ [0,1/2] such that κ(S) = |exp(2πiα(S)) - 1|. We show that for integers m > 1 and d ≥ 1, α 1 , m , . . . , m d - 1 = ( m d - 1 - 1 ) / ( 2 ( m d - 1 ) ) and α1,m,m²,... = 1/(2m).

Examples of non-shy sets

Randall Dougherty (1994)

Fundamenta Mathematicae

Christensen has defined a generalization of the property of being of Haar measure zero to subsets of (abelian) Polish groups which need not be locally compact; a recent paper of Hunt, Sauer, and Yorke defines the same property for Borel subsets of linear spaces, and gives a number of examples and applications. The latter authors use the term “shyness” for this property, and “prevalence” for the complementary property. In the present paper, we construct a number of examples of non-shy Borel sets...

Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space

Bahloul Rachid (2019)

Archivum Mathematicum

The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations d d t [ x ( t ) - L ( x t ) ] = A [ x ( t ) - L ( x t ) ] + G ( x t ) + 1 Γ ( α ) - t ( t - s ) α - 1 ( - s a ( s - ξ ) x ( ξ ) d ξ ) d s + f ( t ) , ( α > 0 ) with the periodic condition x ( 0 ) = x ( 2 π ) , where a L 1 ( + ) . Our approach is based on the R-boundedness of linear operators L p -multipliers and UMD-spaces.

Existence of large ε-Kronecker and FZI₀(U) sets in discrete abelian groups

Colin C. Graham, Kathryn E. Hare (2012)

Colloquium Mathematicae

Let G be a compact abelian group with dual group Γ and let ε > 0. A set E ⊂ Γ is a “weak ε-Kronecker set” if for every φ:E → there exists x in the dual of Γ such that |φ(γ)- γ(x)| ≤ ε for all γ ∈ E. When ε < √2, every bounded function on E is known to be the restriction of a Fourier-Stieltjes transform of a discrete measure. (Such sets are called I₀.) We show that for every infinite set E there exists a weak 1-Kronecker subset F, of the same cardinality as E, provided there are not “too many”...

Currently displaying 641 – 660 of 2289