Stability of periodic solutions of some integral equations.
In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval with a tolerance level . The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force . After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant....
This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.
The existence of a one-parameter family of stationary solutions to a fragmentation equation with size diffusion is established. The proof combines a fixed point argument and compactness techniques.
In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory....
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay The stability of the zero solution of this eqution provided that . The Caratheodory condition is used for the functions and .
We study the asymptotic behavior of the solutions of a scalar convolution sum-difference equation. The rate of convergence of the solution is found by determining the asymptotic behavior of the solution of the transient renewal equation.