Displaying 81 – 100 of 142

Showing per page

Spectre du noyau intégral ( x 2 + y 2 + 1 ) - 1

Michel Gaudin (1981)

Annales de l'institut Fourier

On construit les fonctions propres sur R et les valeurs caractéristiques λ n du noyau de Hilbert-Schmidt ( x 2 + y 2 + 1 ) - 1 . Le spectre est donné par la solution d’une équation transcendante dont le comportement asymptotique est λ n 1 2 exp ( π n ) .

Splitting d'opérateur pour l'équation de transport neutronique en géométrie bidimensionnelle plane

Samir Akesbi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to introduce and to analyze new algorithms for solving the transport neutronique equation in 2D geometry. These algorithms present the duplicate favors to be, on the one hand faster than some classic algorithms and easily to be implemented and naturally deviced for parallelisation on the other hand. They are based on a splitting of the collision operator holding amount of caracteristics of the transport operator. Some numerical results are given at the end of this work. ...

Stabilité du spectre ponctuel d'opérateurs de Toeplitz généralisés

Lioudmila Nikolskaia (1995)

Studia Mathematica

A general scheme based on a commutation relation is proposed to give rise to a definition of generalized Toeplitz operators on a Banach space. Under suitable conditions the existence of a symbol is proved and its continuation to algebras generated by generalized Toeplitz operators is constructed. A stability theorem for the point spectrum of an operator from generalized Toeplitz algebras is established; as examples one considers the standard and operator valued Toeplitz operators on weighted Hardy...

Stability analysis of reducible quadrature methods for Volterra integro-differential equations

Vernon L. Bakke, Zdzisław Jackiewicz (1987)

Aplikace matematiky

Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation y ' ( t ) = γ y ( t ) + 0 t ( λ + μ t + v s ) y ( s ) d s and absolute stability is deffined in terms of the real parameters γ , λ , μ and v . Sufficient conditions are illustrated for ( 0 ; 0 ) - methods and for combinations of Adams-Moulton and backward differentiation methods.

Stability criteria of linear neutral systems with distributed delays

Guang-Da Hu (2011)

Kybernetika

In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded...

Currently displaying 81 – 100 of 142