Displaying 221 – 240 of 248

Showing per page

How to solve an operator equation.

Martin Mathieu (1992)

Publicacions Matemàtiques

This article summarizes a series of lectures delivered at the Mathematics Department of the University of Leipzig, Germany, in April 1991, which were to overview techniques for solving operator equations on C*-algebras connected with methods developed in a Spanish-German research project on "Structure and Applications of C*-Algebras of Quotients" (SACQ). One of the researchers in this project was Professor Pere Menal until his unexpected death this April. To his memory this paper shall be dedicated....

Hull-minimal ideals in the Schwartz algebra of the Heisenberg group

J. Ludwig (1998)

Studia Mathematica

For every closed subset C in the dual space Ĥ n of the Heisenberg group H n we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra S ( H n ) and we show that in general for two closed subsets C 1 , C 2 of Ĥ n the product of j ( C 1 ) and j ( C 2 ) is different from j ( C 1 C 2 ) .

Hyers-Ulam constants of Hilbert spaces

Taneli Huuskonen, Jussi Väısälä (2002)

Studia Mathematica

The best constant in the Hyers-Ulam theorem on isometric approximation in Hilbert spaces is equal to the Jung constant of the space.

Hyperbolic-like manifolds, geometrical properties and holomorphic mappings

Grzegorz Boryczka, Luis Tovar (1996)

Banach Center Publications

The authors are dealing with the Dirichlet integral-type biholomorphic-invariant pseudodistance ρ X α ( z 0 , z ) [ ] introduced by Dolbeault and Ławrynowicz (1989) in connection with bordered holomorphic chains of dimension one. Several properties of the related hyperbolic-like manifolds are considered remarking the analogies with and differences from the familiar hyperbolic and Stein manifolds. Likewise several examples are treated in detail.

Hypercyclic and chaotic weighted shifts

K.-G. Grosse-Erdmann (2000)

Studia Mathematica

Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors ( e n ) form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.

Hypercyclicity of convolution operators on spaces of entire functions

F.J. Bertoloto, G. Botelho, V.V. Fávaro, A.M. Jatobá (2013)

Annales de l’institut Fourier

In this paper we use Nachbin’s holomorphy types to generalize some recent results concerning hypercyclic convolution operators on Fréchet spaces of entire functions of bounded type of infinitely many complex variables

Currently displaying 221 – 240 of 248