Un primo approccio alla teoria delle funzioni analitiche in un'algebra di misure complesse
Dans ce papier, nous allons étendre le principe classique d’invariance de Donsker [4] dans une classe des espaces de Besov-Orlicz associés à la -fonction exponentielle .
Soit une algèbre uniforme et soit un idéal fermé de tel que soit une algèbre isométriquement isomorphe à , il existe alors une sous-algèbre fermée telle que est isométriquement isomorphe à .
Nous montrons principalement que, si est une fonction différentiable sur un intervalle , si sa dérivée est höldérienne d’ordre avec et si (resp. quand (resp. alors , qui est absolument continue, admet (presque partout) une dérivée bornée presque partout.
Se prueba que si f es una aplicación de clase p en un abierto de un cuadrante de un espacio de Banach real, entonces en cada punto del abierto, f admite una extensión de clase p a un entorno global de dicho punto.Se utiliza este resultado para establecer un teorema de extensión de Whitney en un cuadrante de un espacio de Banach y un teorema de la función inversa en variedades con borde anguloso.
On énonce un théorème de fonctions implicites du type de Nash-Moser, et on indique une application à l’étude des singularités de fonctions différentiables réelles (problème du déploiement universel de Thom).