Displaying 181 – 200 of 308

Showing per page

A splitting theory for the space of distributions

P. Domański, D. Vogt (2000)

Studia Mathematica

The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'

A theorem of the Hahn-Banach type and its applications

Zbigniew Gajda, Andrzej Smajdor, Wilhelmina Smajdor (1992)

Annales Polonici Mathematici

Let Y be a subgroup of an abelian group X and let T be a given collection of subsets of a linear space E over the rationals. Moreover, suppose that F is a subadditive set-valued function defined on X with values in T. We establish some conditions under which every additive selection of the restriction of F to Y can be extended to an additive selection of F. We also present some applications of results of this type to the stability of functional equations.

Currently displaying 181 – 200 of 308