Ensembles bornés dans un espace uniforme
Utilizing elementary properties of convergence of numerical sequences we prove Nikodym, Banach, Orlicz-Pettis type theorems
On étudie les espaces vectoriels topologiques localement convexes métrisables qui sont image linéaire continue d’un espace de Fréchet séparable. On détermine la classe de Baire de ces espaces dans leur complété, ainsi que la classe de Baire des formes linéaires boréliennes sur ces espaces, en construisant pour chacun une suite transfinie dénombrable d’espaces de Fréchet séparables qui lui est canoniquement associée.