Displaying 21 – 40 of 54

Showing per page

Some results about absolute summability of operators in Banach spaces.

Luis López Corral (1986)

Stochastica

In order to study the absolute summability of an operator T we consider the set ST = {{xn} | ∑||Txn|| < ∞}. It is well known that an operator T in a Hilbert space is nuclear if and only if ST contains an orthonormal basis and it is natural to ask under which conditions two orthonormal basis define the same left ideal of nuclear operators. Using results about ST we solve this problem in the more general context of Banach spaces.

Spreading sequences in JT

Helga Fetter, B. Gamboa de Buen (1997)

Studia Mathematica

We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l 2 or to the summing basis for J.

Stochastic approximation properties in Banach spaces

V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss (2003)

Studia Mathematica

We show that a Banach space X has the stochastic approximation property iff it has the stochasic basis property, and these properties are equivalent to the approximation property if X has nontrivial type. If for every Radon probability on X, there is an operator from an L p space into X whose range has probability one, then X is a quotient of an L p space. This extends a theorem of Sato’s which dealt with the case p = 2. In any infinite-dimensional Banach space X there is a compact set K so that for...

Subspaces of ℓ₂(X) and Rad(X) without local unconditional structure

Ryszard A. Komorowski, Nicole Tomczak-Jaegermann (2002)

Studia Mathematica

It is shown that if a Banach space X is not isomorphic to a Hilbert space then the spaces ℓ₂(X) and Rad(X) contain a subspace Z without local unconditional structure, and therefore without an unconditional basis. Moreover, if X is of cotype r < ∞, then a subspace Z of ℓ₂(X) can be constructed without local unconditional structure but with 2-dimensional unconditional decomposition, hence also with basis.

Subspaces of the Bourgain-Delbaen space

Richard Haydon (2000)

Studia Mathematica

It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space X a , b has a subspace isomorphic to some p .

Currently displaying 21 – 40 of 54