Displaying 2221 – 2240 of 3166

Showing per page

Remarks on continuous images of Radon-Nikodým compacta

Marián J. Fabián, Martin Heisler, Eva Matoušková (1998)

Commentationes Mathematicae Universitatis Carolinae

A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact K we prove: If K is totally disconnected, then it is Radon-Nikod’ym compact. If K is adequate, then it is even Eberlein compact.

Remarks on rich subspaces of Banach spaces

Vladimir Kadets, Nigel Kalton, Dirk Werner (2003)

Studia Mathematica

We investigate rich subspaces of L₁ and deduce an interpolation property of Sidon sets. We also present examples of rich separable subspaces of nonseparable Banach spaces and we study the Daugavet property of tensor products.

Remarks on some properties in the geometric theory of Banach spaces

Wagdy Gomaa El-Sayed, Krzysztof Fraczek (1996)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to derive some relationships between the concepts of the property of strong ( α ' ) introduced recently by Hong-Kun Xu and the so-called characteristic of near convexity defined by Goebel and Sȩkowski. Particularly we provide very simple proof of a result obtained by Hong-Kun Xu.

Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures

Giovanni Emmanuele (1996)

Commentationes Mathematicae Universitatis Carolinae

In the paper [5] L. Drewnowski and the author proved that if X is a Banach space containing a copy of c 0 then L 1 ( μ , X ) is not complemented in c a b v ( μ , X ) and conjectured that the same result is true if X is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if μ is a finite measure and X is a Banach lattice not containing copies of c 0 , then L 1 ( μ , X ) is complemented in c a b v ( μ , X ) . Here, we show that the complementability of L 1 ( μ , X ) in c a b v ( μ , X ) together...

Remarks on the Istratescu measure of noncompactness.

Janusz Dronka (1993)

Collectanea Mathematica

In this paper we give estimations of Istratescu measure of noncompactness I(X) of a set X C lp(E1,...,En) in terms of measures I(Xj) (j=1,...,n) of projections Xj of X on Ej. Also a converse problem of finding a set X for which the measure I(X) satisfies the estimations under consideration is considered.

Currently displaying 2221 – 2240 of 3166