Displaying 2321 – 2340 of 3166

Showing per page

Smith's counterexample about uniform rotundity in every direction.

Manuel Fernández, Isidro Palacios (2000)

Extracta Mathematicae

It is an open question when the direct sum of normed spaces inherits uniform rotundity in every direction from the factor spaces. M. Smith [4] showed that, in general, the answer is negative. The purpose of this paper is to carry out a complete study of Smith's counterexample.

Smooth approximations without critical points

Petr Hájek, Michal Johanis (2003)

Open Mathematics

In any separable Banach space containing c 0 which admits a C k-smooth bump, every continuous function can be approximated by a C k-smooth function whose range of derivative is of the first category. Moreover, the approximation can be constructed in such a way that its derivative avoids a prescribed countable set (in particular the approximation can have no critical points). On the other hand, in a Banach space with the RNP, the range of the derivative of every smooth bounded bump contains a set...

Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X)

Marián Fabian, Sebastián Lajara (2012)

Studia Mathematica

We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.

Smoothness in Banach spaces. Selected problems.

Marian Fabian, Vicente Montesinos, Václav Zizler (2006)

RACSAM

This is a short survey on some recent as well as classical results and open problems in smoothness and renormings of Banach spaces. Applications in general topology and nonlinear analysis are considered. A few new results and new proofs are included. An effort has been made that a young researcher may enjoy going through it without any special pre-requisites and get a feeling about this area of Banach space theory. Many open problems of different level of difficulty are discussed. For the reader...

Sobczyk's theorem and the Bounded Approximation Property

Jesús M. F. Castillo, Yolanda Moreno (2010)

Studia Mathematica

Sobczyk's theorem asserts that every c₀-valued operator defined on a separable Banach space can be extended to every separable superspace. This paper is devoted to obtaining the most general vector valued version of the theorem, extending and completing previous results of Rosenthal, Johnson-Oikhberg and Cabello. Our approach is homological and nonlinear, transforming the problem of extension of operators into the problem of approximating z-linear maps by linear maps.

Sobczyk's theorems from A to B.

Félix Cabello Sánchez, Jesús M. Fernández Castillo, David Yost (2000)

Extracta Mathematicae

Sobczyk's theorem is usually stated as: every copy of c0 inside a separable Banach space is complemented by a projection with norm at most 2. Nevertheless, our understanding is not complete until we also recall: and c0 is not complemented in l∞. Now the limits of the phenomenon are set: although c0 is complemented in separable superspaces, it is not necessarily complemented in a non-separable superspace, such as l∞.

Currently displaying 2321 – 2340 of 3166