Displaying 2461 – 2480 of 3166

Showing per page

Somme Ponctuelle D'operateurs Maximaux Monotones Pointwise Sum of two Maximal Monotone Operators

Attouch, H., Riahi, H., Théra, M. (1996)

Serdica Mathematical Journal

∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graph-convergence of maximal monotone...

Spaces of compact operators on C ( 2 × [ 0 , α ] ) spaces

Elói Medina Galego (2011)

Colloquium Mathematicae

We classify, up to isomorphism, the spaces of compact operators (E,F), where E and F are the Banach spaces of all continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological products of Cantor cubes 2 and intervals of ordinal numbers [0,α].

Spaces of Lipschitz and Hölder functions and their applications.

Nigel J. Kalton (2004)

Collectanea Mathematica

We study the structure of Lipschitz and Hölder-type spaces and their preduals on general metric spaces, and give applications to the uniform structure of Banach spaces. In particular we resolve a problem of Weaver who asks wether if M is a compact metric space and 0 < α < 1, it is always true the space of Hölder continuous functions of class α is isomorphic to l∞. We show that, on the contrary, if M is a compact convex subset of a Hilbert space this isomorphism holds if and only if...

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

Spaces of type H + C

Walter Rudin (1975)

Annales de l'institut Fourier

A simple theorem is proved which states a sufficient condition for the sum ot two closed subspaces of a Banach space to be closed. This leads to several analogues of Sarason’s theorem which states that H + C is a closed subalgebra of L . In these analogues, the unit circle is replaces by other groups, and the unit disc is replaced by polydiscs or by balls in spaces of several complex variables. Sums of closed ideals in Banach algebras are also studied.

Spaces with maximal projection constants

Hermann König, Nicole Tomczak-Jaegermann (2003)

Studia Mathematica

We show that n-dimensional spaces with maximal projection constants exist not only as subspaces of l but also as subspaces of l₁. They are characterized by a rigid set of vector conditions. Nevertheless, we show that, in general, there are many non-isometric spaces with maximal projection constants. Several examples are discussed in detail.

Sparse recovery with pre-Gaussian random matrices

Simon Foucart, Ming-Jun Lai (2010)

Studia Mathematica

For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by ℓ₁-minimization under the optimal condition m ≥ csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the ℓ₁-norm and the outer norm depends on probability distributions.

Currently displaying 2461 – 2480 of 3166